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reaction-limited colloid aggregation 11: Concentration effects 
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Instituto de Fisica, UNAM, Apdo. Postal 20-364, Del. Alvaro Obreg6n. OlWO Mexico, 
D.F. 

Received 6 July 1992, in final form 26 February 1993 

Abstract. Computer simulations of reaction-limited colloid aggregation are performed to 
try to obtain the universal behaviour observed by experimentalists. In a previous 
communication the effects of reducing the sticking probability were analysed. In this 
report, the effects of a reduction in concentration together with a reduction in sticking 
probability are studied, reaching concentrations as low as 0.001 in volume fraction and 
sticking probabilities ten timm smaller than those used by other authors. We still observe 
the universal behaviour only at the beginning of the aggregation process. 

1. Introduction 

In a previous communication by the author (Gonzsez 1992) an effort was started to 
study the reaction-limited colloid aggregation process, via computer simulations, to 
try to match the results with the universal ones found in a growing number of 
experiments. In reaction-limited colloid aggregation (RLCA), as opposed to diffusion- 
limited colloid aggregation (DLCA), there have been serious discrepancies between 
three-dimensional simulations and experiments. Basically, the experimental outcomes 
yield the following three essential results: (a) The fractal dimension of the clusters 
ranges between 2.0 and 2.2, with a typical value being around 2.1. This fractal 
dimension is perhaps the only quantity for which there is a reasonably good agreement 
between experiments and simulations. (b) The weight-average cluster size S(t) grows 
exponentially with time according to most workers (Weitz et all985, Lin et a1 1989, 
1990, Martin et a/ 1990); however, Broide and Cohen (1990) find that the exponential 
growth occurs only at the initial stages of the aggregation, crossing over to an 
algebraic growth at later times. (c) The cluster size distribution function N,(t) 
decreases monotonically with the exponent r: N,(t) -s-rg(s/S(t)), where g is a cutoff 
function that decays rapidly to zero for values of the argument greater than one, and 
takes the value one for arguments smaller than one. The majority of researchers (von 
Schultess et nl1980, Bowen et al 1984, Weitz et a! 1985, Lin ef al 1989, 1990, Broide 
and Cohen 1990) agree on values for r close to 1.5, but some others (Martin 1987, 
Rarity 1987, Rarity et a1 1989) have obtained values near 2. 

The only theory known to the author (Ball et al 1987) for RLCA is based on the 
Smolochowski equation, and results also in T =  1.5 and an exponential growth of the 
mean cluster size. The computer simulations in three dimensions (Family et aZ1985, 
Meakin and Family 1987, 1988), in contrast, have yielded a number of exponents z 
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that do not coincide with the value 1.5, and in many of the cases their values were 
varying with time. Also, it was not possible to fit the curves for the weight-average 
cluster size either to a power law or to an exponential, over the whole range of the 
aggregation time. To do the simulations, however, Meakin and Family (1987, 1988) 
mostly use the models of Brown and Ball (1985) and Leyvraz (unpublished), that are 
related to RLCA but that do not correspond to the original RLCA algorithm-defined 
here as the DLCA algorithm plus a very small bonding probability at each collision 
between colloidal particles-although they sometimes use the original RLCA algor- 
ithm. In their version of the Brown and Ball model, clusters on a cubic lattice are 
randomly selected and moved according to the values of their diffusion constants. 
Each selected cluster is moved with equal probability to any set of unoccupied lattice 
sites in the system. If, in the new position, the cluster happens to be adjacent to 
another cluster(s) in the system, the clusters are combined to form a new cluster and 
so on. Their version of the Leyvraz model simulates RLCA in the zero density limit. 
Here, one works with a collection of clusters; two particles belonging to different 
clusters are randomly selected, with a probability proportional to the sum of the 
diffusion coefficients of the corresponding clusters, and brought into contact with each 
other. If no overlap occurs between the two clusters, they are merged and the 
resulting cluster is returned to the collection, taking the place of the two original 
clusters. These models were mainly introduced to reduce the computing time, which 
becomes prohibitively tong for low sticking probabilities. No matter how plausible the 
two models appear, no-one has shown them to exactly coincide with the original 
RLCA algorithm defined above, which most faithfully resembles the experimental 
aggregation. 

2. Themodel 

The intention of this series of publications is to reconsider the RLCA problem via 
computer simulations, using different versions of the original RLCA algorithm. In the 
first communication (GonzAlez 1992) the emphasis was put on lowering the sticking 
probability as much as possible. The concentration was kept, however, at a relatively 
high value (0.01 of volume fraction), for which the truly asymptotic behaviour of RLCA 
may not show up. In the present communication, the emphasis will be on lowering 
both the concentration and the sticking probability, as much as the computing time 
permits. For a short description of the model used, consider a three-dimensional cubic 
lattice with periodic boundary conditions, where at some intermediate time a collec- 
tion of clusters made of nearest-neighbour lattice cells diffuses randomly. Pick one of 
the clusters at random and move it by one lattice unit in a random direction, only if a 
random number X uniformly distributed in the range O<X<1 satisfies the condition 
X < D ( s ) / D - ,  where D ( s ) - ~ - ” ~  is the diffusion coefficient for the selected cluster of 
size s, and D,,, is the maximum diffusion coefficient for any cluster in the system. 
Here D=2.1 is the accepted value for the fractal dimension of RLCA clusters. After 
each cluster has been selected the time is incremented by 1/(N, D,,,), where N, is the 
number of clusters in the system at that time, whether or not the cluster is actually 
moved. If the cluster attempts to move into the lattice cells occupied by another 
cluster (signifying an encounter), the move is not permitted and the moving cluster 

, either sticks (and is merged) to the other with a small probability P,, or remains side by 
side with the other with probability 1 -Po. A difference between this mode and other 
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aggregation models that use the original RLCA algorithm (Family et a1 1985. Meakin 
and Family 1987, 1988) is that here a test for sticking is done after each collision 
between colloidal particles and not just after the two clusters become adjacent. 
Therefore, as for the sticking probability is concerned, this model is equivalent to 
those other models but with a value of their sticking probability of roughly Po divided 
by 5 (GonzAlez 1992). Three values of the volume fraction p were used: 0.01, 0.003 
and 0.001. For each of the concentrations, seven values of the sticking probability Po 
were employed: 0.5, 0.1, 0.05, 0.01, 0.005, 0.001 and 0.0005 (we recall that 0.5 
corresponds to 0.1 in the other models, and may still show some features of RLCA). 
Finally, two simulations were done for each case, just to check for reproducibility. 
The number of initial particles used were 40 960,24 OOO and 13 144 for p equal to 0.01, 
0.003 and 0.001, respectively. The simulations were stopped when a cluster reached a 
maximum size of 2000 (p=O.Ol), 1600 (p=0.003) and 1500 (p=O.OOl). Each of the 
P,,=O.oooS simulations with p equal to 0.01,0.003 and 0.001 took roughly 27 h, 53 h 
and 84 h of a Cray Y-MF' processor, respectively. 

3. Results 

In table 1 are shown the values of the fractal dimension, obtained from a least squares 
fitting of the log-log data for the radius of gyration versus sue, for the 42 runs 
mentioned. All the errors (in parentheses) correspond to twice the standard devi- 
ation. From the table we see that the fractal dimension appears to approach its 
asymptotic value of around 2.1, with higher sticking probabilities if the concentration 
is low (P,=O.Ol for p=O.OOl). while it does so only with a lower sticking probability 
for higher concentrations (Pe=0.005 for p=O.Ol). However, it is difficult to state this 
conclusively due to the higher scattering of the data for lower concentrations, which is 
a consequence of having used less particles. 

In figures 1 , 2  and 3 are shown the In N, versus Ins curves at different times for six 
of the cases mentioned. In figure 1 are drawn two p=O.Ol cases (Po=0.0005 and 
Po=0.5), infigure2wesee twop=0.003cases(againPo=0.0005andPo=0.5), while 
in figure 3 are shown the corresponding two p=O.OOl cases. We see on all of them 
that, after some transient time, the C U N ~ S  start to develop an initial slope (curves c). 

Table 1. 

p=o.o1 
Po 0.5 0.1 0.05 0.01 0.005 0.001 0.W5 
1st run 1.89(0.04) 1.97(0.04) Z.Ol(0.03) 2.04(0.04) 2.14(0.04) Z.ll(0.04) Z.lZ(O.04) 
2nd NrI 1.85(0.04) 1.94[0.04) Z.oZ(o.iM) 2.01(0.04) 2.16(0.04) 2.05(0.04) 2.1q0.04) 

p=0.003 
Po 0.5 0.1 0.05 0.01 0.00s 0.001 0.0005 
1st run 1.87(0.05) 1.89(0.05) ?.09(0.06) Z.lZ(0.05) 2.06(0.04) Z.lO(0.04) Z.OS(0.05) 
2nd run 1.83(0.04) 1.99(0.04) Z.Ol(0.05) Z.M(O.04) 1.99(0.04) 2.17(0.05) 1.95(0.06) 

p= 0.001 
P" 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 
1st run 1.94(0.06) Z.OO(0.05) Z.Ol(0.05) 2.09(0.06) Z.U(O.06) 2.16(0.06) Z.OZ(0.06) 
2nd run l.SO(O.06) 1.93(0.05) l.SS(0.05) 2.09(0.04) Z.lO(O.06) Z.lS(0.06) Z.OS(O.08) 
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Figwe 1. A log-log plot of the cluster size distribution versus size for different times. 
corresponding to Po= O.CHM5 (left) and to P. = O S  (right), both for p= 0.01. The times of 
the different curves on the left are: (a) 22026, (b) 109098. (c) 2428U2, (d) joo312. 
(e) 540365, ( f )  729416, (g) 984609 and (h) 1329083, while those of the curves on the 
right are: (a) 45, @) 148, (e) 446. (d) 898, (e) 1339, (0 1998 and (9) 2981. 

However, this slope (minus the exponent z) diminishes with time for all the runs 
mentioned. For all cases on the left of the figures (Po=0.0005) the starting slopes are 
around -1.5, while the final slopes (curves g and h) are around - 1 (but of course, this 
final slope depends on the point at which the simulation is stopped). For the cases on 
the right (Po=0.5) the initial slopes are around -1.2, -1.2 and -1.3 for p equal to 
0.01, 0.003 and 0.001, respectively, while the h a 1  ones (curves g) are around -0.5, 
-0.8 and -0.6, also respectively. For the remaining values of Po the situation is 
intermediate: in most of the cases-except for Po = 0.1 and 0.5-the starting exponent 
z is around 1.5 while it drops below one during the aggregation process. All the slopes 
after the initial ones were obtained with a least squares fitting of the data. 

In figures 4,5 and 6 are shown, on the left, the In (S(r))  versus In (I) curves for the 
21 cases mentioned, while on the right, we see the corresponding In (N,(t)) versus 
In (t) curves, where N,(t) is the number of clusters at time t. In all cases S(t) appears to 
grow exponentially initially, while it grows as a power law at later times: S ( f )  - t z .  The 
exponent z depends both on P, and p ,  but for values of Po that correspond to RLCA 

(that is, that give a fractal dimension -2.1) it stays at around 2.7 for p= kO.01, at 
around 2.5 for p=0.003 and at around 2.4 for p=O.OOl. This last value of z must 
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Figure 2. As in figure 1. corresponding this time top=O.W3. The times of the different 
curves on lhe left arc now: (a) 109098, (b) 327748, (c) 890911, (d) 1468864, 
(e) 2 191 288, ( f )  2 957 929 and (9) 3 992 787, while the times of the curves on the right are: 
(a) 148, (b) 493, (e )  1480, (d) 2697, (e) 4024, (0 MK)3 and (g) 8103. 
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Figure 3. As in figure I ,  corresponding now to p=O.OOl. The times of the curves on the 
left are: (a) 268337, (b) 984609, (c) 2676445, (d) 3992787, (e) 5956538, ( f )  8040485 
and (g) 10 853 520, while tho% of the curves on the right are in this occasion: (a) 330, 
(b) 1097, (c) 3641, (d) 8103, (e) 12088, (0 18034 and (g) 26093. 

approach the asymptotic one (that is, for low Po and low p) of this version of =A. 
We notice that the limiting slopes of the In (Ne@))  curves are roughly the negatives of 
the In (S(t ) )  curves. This indicates that in this version of RLCA S(t)--S,(t) for the later 
times, where S&) is the number average cluster size. 

Finally, in figures 7, 8 and 9 are shown the In (S(t ) )  versus t and the In (Nc(t))  
versus f curves, plotted in order to check that the initial growth is really exponential. 
In figure 7 two p= 0.01 cases are considered: Po = 0.0005 and 0.1, while in figure 8 two 
p=O.003 cases are shown: again Po=0.0005 and 0.1, ending, in figure 9, with the 
corresponding two p =  0.001 cases. For the figures on the left (Po= 0.0005) we see that 
S(t) starts to grow exponentially with t, but only for a smaU fraction of the aggregation 
time. However, for the figures on the right-with P.=O.l-this fraction of time 
becomes even smaller. For values of Po between 0.0005 and 0.1, the situation was 
intermediate. It was interesting to check, in all cases, that the initial slope for the 
In S(t) curves was roughly twice the negative of the initial slope for In Nc(t). This 
indicates that, initially, S(t)--&(t)*. All this is in agreement with the theoretical 
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Figure 4. Left: A log-log plot of the weight-average cluster siZe as a function of time. 
Right: A log-log plot of the number of clusters versus time. The different cumes 
correspond to the sticking probabilities (a) 0.5, (b) 0.1, (c) 0.05. (d) 0.01, (e) 0.005, 
(0 0.001 and (g) 0.0005, and all of them are for p=O.O1. The limiting slopes of the 
weight-average cluster size curves are (a) 1.6, (b) 2.0, (c) 2.1, (d) 2.6, (e) 2.6, ( f )  2.8 and 
(9) 2.7, while those corresponding to the curves for the number of clusters are (a) -1.8, 
(b) -2.1, (c) -2.4, (d) -2.4, (e) -2.6, (f) -2.7 and (8) -2.8. 
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Fwm 5. As in figure 4. this time for p=O.003. The limiting slopes of the curves for the 
weight-average cluster size are now (a) 1.3, (b) 1.8, (c) 1.9. (d) 2.6, (e) 2.3. (f) 2.5 and 
(8) 2.5. while those corresponding to the curves for the number of clusters are (a) - 1.5, 
(b) -1.9. (c) -2.1, (d) -2.2, (e) -2.2, (0 -2.4and (g) -2.4. 

results (Taylor and Sorensen 1987, Broide 1988) that if l<r<2,  then S(t)- 
(S,(t))""-r', while if r< 1, then S(t)-S.(t). If initially, r= 1.5, then S(t)-S.(t)', 
while if at the end, z goes below one, then S(r)-Sn(t). 

We now briefly summarize the main results of the simulations: (1) The fractal 
dimension indeed reaches the value of around 2.1 for low enough values of the 
sticking probability, independently of the volume fraction p used (0.001 < p<O.Ol). 
(2) After some transient time, the log-log plots of the cluster size distribution function 
versus size start to develop a straight line. However, the slope (minus the exponent z) 
diminishes with time for all cases considered (0.001 <p<O.Ol), initially being around 
-1.5 for low bonding probabilities. (3) For low sticking probabilities. the weight- and 
number-average cluster sizes start increasing exponentially with time in all cases 
considered (0.001<p<0.01), but only for a small fraction of the whole aggregation 
time. However, for higher bonding probabilities, this fraction of time becomes even 
smaller. In all cases considered, there was a crossover to a power law growth for later 
times, with the asymptotic value of the exponent z-that is, for sticking probabilities 
within the RLCA limit-depending on concentration. It was found, in all cases, that at 
the beginning S(t)-S.(t)', while at the end S(t)-S&). 

I 

Figure 6. As in figure 4, now for p=O.OOl. The limiting slopes of the curves for the 
weight-average cluster size are in this case (a) 1.3, (b) 1.8, (c) 2.0, (d) 2.5, (e) 2.4, (f) 2.4 
and (9) 2.5, while those corresponding to the curvews for the number of clusters are (a) 
-1.4, (b) -1.8. (c) -2.2,(d) -2.4. (e) -2.4, (0 -2.1 and(g) -2.2. 
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F@re I. A semi-log plot of the weight-average cluster sue and of the numher of clusters 
both as a function of time, for p=O.O1 and WO values of the sticking probability: 
P,=O.OOOS (left) and P,,=O.l (right). 

4. Cnnclnsions 

As a conclusion, it appears that we start with an RLCA algorigthm that very soon 
crosses over into something different (not DLCA, which has a bell-shaped distribution). 
The mere fact that the exponent r diminishes over the course of time prevents 
dynamic scaling in this version of RLCA. This is not meant to imply, of course, that the 
RLCA problem cannot be described by a scaling distribution. The many experimental 
evidences already mentioned show this dynamic scaling and should be taken seriously. 
The theoretical work by Ball et a1 (1987) is also in support of dynamic scaling. This 
only means that the model, though perhaps closer to reality than other RLCA models, 
is still perfectible. In this respect it is worth remembering two important factors 
mentioned earlier (Gonziilez 1992) that haven’t been taken into account yet: the 
rotational diffusion of the clusters and the true step length of a Brownian particle or 
cluster. As already noticed in GonziIez (1992), in RLCA there are many encounters 
between two colloidal particles, before they go away, if the step length is much shorter 
than the diameter. This may change the situation and lead to a constant exponent 
r= 1.5 plus a mean cluster size growing exponentially with time, for a bigger fraction 
of the whole aggregation time. Those two factors will be considered in future 
publications. One more possibility, the finite size of our system, looks doubtful to 
contribute to this non-universal behaviour, now that we have been able to consider 
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Figure 8. As in figure 7. now for p=O.O03 and two va:ues of the sticking probability: 
P,=O.OOOS (left) and P,,=O.l (right). 
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Figure 9. As in figure 7, this time for p =  0.001 and two values of the sticking probability: 
P.=O.OOOS (left) and Po=O.l (right). 

simulations with as many as 40 960 particles (for p = 0.01). As we can see from the 
corresponding results (table and figures), those simulations are the least noisy of all, 
as long as we stop the simulations when there are still sufficiently many clusters. 
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